翻訳と辞書
Words near each other
・ Braid algebra
・ Braid bar
・ Braid Burn
・ Braid discography
・ Braid group
・ Braid Hills
・ Braid My Hair
・ Braid Station
・ Braid statistics
・ Braid theory
・ Braid-breaker
・ Braided
・ Braided cheese
・ Braided fishing line
・ Braided Hopf algebra
Braided monoidal category
・ Braided Path
・ Braided river
・ Braided River (Publishing)
・ Braided rug
・ Braided stainless steel brake lines
・ Braided vector space
・ Braidfauld
・ Braidhurst High School
・ Braiding machine
・ Braidley
・ Braids (band)
・ Braids on a Bald Head
・ Braidwood
・ Braidwood (surname)


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Braided monoidal category : ウィキペディア英語版
Braided monoidal category
In mathematics, a ''commutativity constraint'' \gamma on a monoidal category ''\mathcal'' is a choice of isomorphism
\gamma_:A\otimes B \rightarrow B\otimes A
for each pair of objects A and B which form a "natural family." In particular, to have a commutativity constraint, one must have A \otimes B \cong B \otimes A for all pairs of objects A,B \in \mathcal.
A braided monoidal category is a monoidal category \mathcal equipped with a braiding - that is, a commutativity constraint \gamma that satisfies the hexagon identities (see below). The term braided comes from the fact that the braid group plays an important role in the theory of braided monoidal categories. Partly for this reason, braided monoidal categories and various related notions are important in the theory of knot invariants.
Alternatively, a braided monoidal category can be seen as a tricategory with one 0-cell and one 1-cell.
==The hexagon identities==
For \mathcal along with the commutativity constraint \gamma to be called a braided monoidal category, the following hexagonal diagrams must commute for all objects A,B,C \in \mathcal. Here \alpha is the associativity isomorphism coming from the monoidal structure on \mathcal:

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Braided monoidal category」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.